Home » , , »

Contemporary scientists' significant achievements in chemistry and biology.

September 11, 2019

Contemporary scientists' significant achievements in chemistry and biology.

Billions of years of chemical evolution on our planet have created a chemical library of immense size and diversity – the Earth’s chemo. Scientists at Stanford are leading research directed at translating this library, creating fundamentally new knowledge about the origins and workings of life, and how molecules, molecular assemblies, and metabolic pathways contribute to the chemistry and biology of living organisms. From the structure and function of molecules within a cell to the interaction of cells

within an organism and inter-organismal biochemistry, this research is providing new insights into the normal and abnormal biological function, and with that, new strategies for the prevention, detection, and treatment of diseases.

The Stanford Chemistry Department’s strong emphasis on biological and medicinal chemistry positions us well to build on a remarkable history of major achievements in the life sciences and to lead in advancing research that will transform human health and medicine. Medical, life science and chemical biology research at Stanford are driven by an integrated, multi-science, a translational approach that contributes to the ongoing success of Silicon Valley.

Chemical Microbiology

Stanford chemists have developed new methods for analyzing the chemical and physical properties of bacterial biofilms and for imaging microbial structures at ultrahigh resolution. Our ongoing work toward elucidating the mechanistic details underlying microbial natural product biosynthesis has already led to new therapeutic and diagnostic modalities.

Molecular Imaging

Stanford chemists are developing new tools, theories and analytical procedures that allow one to “see” molecular events in living systems in real-time with atomic-level resolution.

Cancer Immune Therapy

Stanford chemists are making critical contributions toward new modalities of cancer immune therapy. We are developing small molecules, biotherapeutics, and hybrid bioconjugates that modulate tumor immunogenicity and immune cell activity. These new approaches could be transformative in our treatment of previously intractable tumors.

Drug Delivery

Stanford chemists are developing new vectors to transport molecules including drugs, imaging agents, peptides, proteins, DNA, and RNA across biological barriers including cell membranes, blood-brain, ocular, skin and lung barriers. This includes the delivery of mRNA, opening new opportunities for therapeutic vaccinations, protein replacement therapy, and gene editing.

Rare Diseases and Unmet Medical Needs

Stanford chemists are taking on the difficult challenge of developing therapeutic approaches for rare diseases that strike small patient populations and are therefore largely neglected by the pharmaceutical industry. These include new interventions for celiac disease as well as congenital disorders of proteostasis. At the same time, they are addressing unsolved problems such as the eradication of HIV/AIDS and treatments for a range of neurological disorders.

Molecular Dynamics, Systems Chemistry and Systems Biology

Stanford chemists are developing new computational tools and theories that allow atomistic dynamics simulations of complex chemical and biological systems that enable understanding of living systems with molecular-level resolution. These approaches will make it increasingly possible to peer into and understand normal as well as abnormal cell function, to track the course of molecules in living systems, and to design new molecules to prevent, detect or treat disease.

Nucleic Acids Chemistry and Biology

Stanford chemists are developing probes and methods for measuring and manipulating the biological function of RNA and DNA and the enzymes that interact with them. Stanford computational chemists are also developing powerful simulation methods to predict the structure of RNAs.

Synthetic Biology

Stanford chemists are designing new DNA bases and novel genetic sets to encode biological activity in cells. Stanford chemists are also altering biosynthetic pathways to produce new biologically active natural products.

Share this article :
Blogger Tips and TricksLatest Tips And TricksBlogger Tricks

FB Page

Copyright © 166/A-1/2017/19. ELITE Institute - All Rights Reserved